HL Paper 2

Chloroethene, C₂H₃Cl, is an important organic compound used to manufacture the polymer poly(chloroethene).

d.i.State an equation for the reaction of ethanoic acid with water.

[1]

d.ii.Calculate the pH of $0.200~\mathrm{mol}~\mathrm{dm}^{-3}$ ethanoic acid (p $K_\mathrm{a}=4.76$).

[3]

e. Determine the pH of a solution formed from adding $50.0~\mathrm{cm^3}$ of $1.00~\mathrm{mol\,dm^{-3}}$ ethanoic acid, $\mathrm{CH_3COOH(aq)}$, to $50.0~\mathrm{cm^3}$ of $0.600 \, \mathrm{mol} \, \mathrm{dm}^{-3}$ sodium hydroxide, NaOH(ag).

[4]

f. (if acid added) $CH_3COO^- + H^+ \rightarrow CH_3COOH$;

[2]

(if alkali added) $CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$;

Explanation marks cannot be awarded without equations.

An equilibrium exists between nitrosyl chloride, NOCl, nitrogen oxide, NO, and chlorine, Cl₂.

$$2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$$

 $20.0~\mathrm{cm^3}$ of hexane, C_6H_{14} , and $20.0~\mathrm{cm^3}$ of pentan-1-ol, $C_5H_{11}OH$, were placed separately into two closed containers at 298 K and allowed to reach equilibrium.

Ammonia is a weak base.

a. (i) Deduce the equilibrium constant expression for this reaction. [7]

Explain the effect on the position of equilibrium and the value of $K_{\rm c}$ when pressure is decreased and temperature is kept constant.

(iii) 2.00 mol of NOCl was placed in a $1.00~\mathrm{dm^3}$ container and allowed to reach equilibrium at 298 K. At equilibrium, 0.200 mol of NO was present. Determine the equilibrium concentrations of NOCI and Cl_2 , and hence calculate the value of K_c at this temperature.

	(iv)	The value of $K_{ m c}$ is $1.60 imes 10^{-5}$ at 318 K. State and explain whether the forward reaction is exothermic or endothermic.	
b.	(i)	Compare the two liquids in terms of their boiling points, enthalpies of vaporization and vapour pressures.	[4]
	(ii)	Explain your answer given for part (b)(i).	
c.i	. Calc	culate the pH of a $1.50~ m moldm^{-3}$ solution of ammonia at 298 K to two decimal places, using Table 15 of the Data Booklet.	[2]
c.i	iA bu	uffer solution is made using $25.0~{ m cm^3}$ of $0.500~{ m moldm^{-3}}$ hydrochloric acid, HCl (aq), and $20.0~{ m cm^3}$ of $1.50~{ m moldm^{-3}}$ ammonia solution,	[2]
	NH	$_3(\mathrm{aq}).$	
	Des	cribe the meaning of the term buffer solution.	
c.i	iiDete	ermine the pH of the buffer solution at 298 K.	[4]
c.i	vA 1.	$50~ m moldm^{-3}$ solution of ammonia is added to $25.0~ m cm^3$ of a $0.500~ m moldm^{-3}$ hydrochloric acid solution in a titration experiment.	[1]
	Calc	culate the total volume of the solution at the equivalence point.	
C.\	v.Calc	culate the pH of the solution at the equivalence point, using Table 15 of the Data Booklet.	[4]
C.\	vil.den	atify a suitable indicator for this titration, using Table 16 of the Data Booklet.	[1]
Α	buffe	r solution with a pH of 3.87 contains $7.41~ m gdm^{-3}$ of propanoic acid, $ m CH_3CH_2COOH$, together with an unknown quantity of sodium	
		oate, $\mathrm{CH_{3}CH_{2}COONa}$.	
a.	Defi	ne the term <i>buffer solution</i> .	[2]
b.	Expl	lain, using appropriate equations, how this solution acts as a buffer solution.	[2]
c.	Calc	culate the concentration, in ${ m moldm^{-3}}$, of sodium propanoate in this buffer solution.	[4]
	The	$\mathrm{p}K_{\mathrm{a}}$ of propanoic acid is 4.87 at 298 K.	
_	ш.		
Вı	utter s	solutions are widely used in both chemical and biochemical systems.	

a. Describe the composition of an acidic buffer solution.

[1]

b.	Determine the pH of a buffer solution, correct to two decimal places, showing your working, consisting of 10.0 g of CH_3COOH and CH_3COOH a						
W	Water is an important substance that is abundant on the Earth's surface.						
		solutions resist small changes in pH. A phosphate buffer can be made by dissolving $ m NaH_2PO_4$ and $ m Na_2HPO_4$ in water, in which $ m NaH_2PO_4$ es the acidic ion and $ m Na_2HPO_4$ produces the conjugate base ion.	\mathcal{O}_4				
Α	0.10	$ m moldm^{-3}$ ammonia solution is placed in a flask and titrated with a $0.10~ m moldm^{-3}$ hydrochloric acid solution.					
a.	(i)	State the expression for the ionic product constant of water, $K_{ m w}.$	[7]				
	(ii)	Explain why even a very acidic aqueous solution still has some OH^- ions present in it.					
	(iii)	State and explain the effect of increasing temperature on the value of $K_{ m w}$ given that the ionization of water is an endothermic process.					
	(iv)	State and explain the effect of increasing temperature on the pH of water.					
b.	(i)	Deduce the acid and conjugate base ions that make up the phosphate buffer and state the ionic equation that represents the phosphate	[7]				
	buffe	er.					
	(ii)	Describe how the phosphate buffer minimizes the effect of the addition of a					
	stro	ng base, $\mathrm{OH^-(aq)}$, to the buffer. Illustrate your answer with an ionic equation.					
	(iii)	Describe how the phosphate buffer minimizes the effect of the addition of a					
	stroi	ng acid, $ m H^+(aq)$, to the buffer. Illustrate your answer with an ionic equation.					
c.	(i)	Explain why the pH of the ammonia solution is less than 13.	[11]				
	(ii)	Estimate the pH at the equivalence point for the titration of hydrochloric acid with ammonia and explain your reasoning.					
	(iii)	State the equation for the reaction of ammonia with water and write the $K_{ m b}$ expression for ${ m NH_3(aq)}$.					
	(iv) [NH	When half the ammonia has been neutralized (the half-equivalence point), the pH of the solution is 9.25. Deduce the relationship between I_3 and $[\mathrm{NH}_4^+]$ at the	1				
	half-	equivalence point.					
	(v)	Determine $\mathrm{p}K_{\mathrm{b}}$ and K_{b} for ammonia based on the pH at the half-equivalence point.					
	(vi)	Describe the significance of the half-equivalence point in terms of its effectiveness as a buffer.					
Ad	cids c	an be described as strong or weak.					

Outline the difference in dissociation between strong and weak acids of the same concentration.

[4]

- (ii) Describe **three** tests that can be carried out in the laboratory, and the expected results, to distinguish between $0.10 \, \mathrm{mol} \, \mathrm{dm}^{-3} \, \mathrm{HCl(aq)}$ and $0.10 \, \mathrm{mol} \, \mathrm{dm}^{-3} \, \mathrm{CH_3COOH(aq)}$.
- b. Calculate the pH, using table 15 of the data booklet, of a solution of ethanoic acid made by dissolving 1.40 g of the acid in distilled water to [4] make a 500 cm³ solution.

[3]

[1]

[2]

[1]

[2]

c.i. Determine the pH at the equivalence point of the titration and the pK_a of an unknown acid using the acid-base titration curve below.

c.ii.Identify, using table 16 of the data booklet, a suitable indicator to show the end-point of this titration.

c.iiiDescribe how an indicator, that is a weak acid, works. Use Le Chatelier's principle in your answer.

d.i. State the formula of the conjugate base of chloroethanoic acid, $CH_2ClCOOH$.

d.iiJdentify, with a reason, whether chloroethanoic acid is weaker or stronger than ethanoic acid using table 15 of the data booklet. [1]

d.iiiDetermine the pH of the solution resulting when 100 cm^3 of 0.50 mol dm^{-3} CH₂ClCOOH is mixed with 200 cm^3 of 0.10 mol dm^{-3} NaOH. [4]

- e. Describe how chlorine's position in the periodic table is related to its electron arrangement.
- f. SCl_2 and $SClF_5$ are two sulfur chloride type compounds with sulfur having different oxidation states. Predict the name of the shape, the bond [[N/A angle and polarity of these molecules.